
Project Documentation Group 07

Janiek Smulders, Jayanshi Tripathi, Luyao Wang and Ruilin Yang

University of Twente
j.l.smulders@student.utwente.nl, j.tripathi@student.utwente.nl, l.wang-6@student.utwente.nl,

r.yang-1@student.utwente.nl

April 19, 2020

According to the following documentation of computational results for the graph isomorphism
project, together with the 0.3 bonus we have got, we aim at a grade of 8.5.

1. Category 6: Basic Problem Instances

The basic problem instance have been solved correctly during the online project delivery session.
The following table shows the computation times.

instance correctly solved comp. time (s)

basicGI1 3 0.03
basicGI2 3 0.02
basicGI3 3 2.66

basicGIAut 3 3.46
basicAut1 3 2.18
basicAut2 3 1.66

Table 1: Computation times basic instances.

2. Category +1: Additional Techniques for Faster Algorithms

2.1. Branching Rules

Not implemented.

2.2. Preprocessing

2.2.1 Trees

Not implemented.

2.2.2 Preprocesing using Twins or Modules

We had an idea on the detection and merging of twins. Two vertices in a False Twin class have the
same neighboring vertices hence the same coloring in the stable partition. Two vertices in a True
Twin class has the same base neighboring vertices (neighboring vertices except the true twins),
hence they will also have the same color in the stable partition.

1

mailto:j.l.smulders@student.utwente.nl
mailto:j.tripathi@student.utwente.nl
mailto:l.wang-6@student.utwente.nl
mailto:r.yang-1@student.utwente.nl

J. Smulders, J. Tripathi, L. Wang, R.Yang: Project Documentation Group 07

The idea is to represent each twin class with only one vertex, so that the disjoint union of all
graphs would have less vertices. By generalizing the vertices into twins classes, it cuts down the
calculation complexity of color refinement algorithm, therefore speeds up the GI problems for
some of the graphs with multiple classes of twins.

However due to time limit, we didn’t finish a correct implementation of it.

3. Category +1: Implementation of Fast Partition Refinement

Based on the algorithmic idea of Hopcroft’s algorithm for DFA minimization, and implementation
idea of Color Refinement and its Applications(2017)[1], we implemented a fast refinement algo-
rithm. This implementation, although not using Doubly Linked List, has speed up the refinement
of graphs with long paths significantly.

comp. times (s)
instance instance size |V| standard fast part. ref.

Threepaths320 960 0.78 0.06
Threepaths640 1920 2.97 0.16

Threepaths1280 3840 13.83 0.54
Threepaths2560 7680 62.98 2.31
Threepaths5120 15360 230.36 8.29

Threepaths10240 30720 872.01 34.32

Table 2: Computation times with and without fast partition refinement.

In the main program, the use of fast refinement to determing partition of vertices can be
enabled by the flag "use_wk5" in both GI_problem and AUT_problem function.

4. Category +1: Using Generating Sets for Computing |Aut(G)|

We have implemented tree pruning and counting number of automorphism by multiplication with
a small number of permutations in a generating set, rather than traversing the entire branching
tree.

instance without gen. set with gen. set

torus24 0.47 0.32
basicGIAut 6.97 3.46

torus72 19.92 16.01
products72 23.89 26.73

torus144 247.28 199.66

Table 3: Computation times with and without using generating set to prune the branching tree

2

J. Smulders, J. Tripathi, L. Wang, R.Yang: Project Documentation Group 07

5. Category +1: Additional and Genuinely New Ideas

5.1. Theorem

If graphs A and B are isomorphic, graph C is not isomorphic with A, then C is not isomorphic
with B.

5.2. Corollary

Here the group is a list of graphs that are deemed as potentially isomorphic by one call of
color refinement. Now branching alogrithm is needed to determine whether every two graphs
within this group is isomorphic. On natural thought, it may need "n choose 2" calls to the
branching algorithm. But based on the idea, we can shrink the number of calls made to the
branching algorithms to at most O(n) times. This resulted in a significant speedup in finding the
isomorphic graphs from a list. we have therefore used the following algorithm to avoid redundant
comparisons:

typify_group(group, list_of_graphs):
types = []
typified = []
for i in range(0, len(group)-1):

if group[i] not in typified:
matches = []
for j in range(i+1, len(group)):

if group[j] not in typified:
if is_iso(list_of_graphs, [group[i], group[j]]):

matches.append(group[j])
else:

pass
typified.append(group[i])
typified.extend(matches)
types.append([group[i]] + matches)

return types

The computation time that we have obtained with and without this algorithm typify are given
in the following table. As can be seen, for larger problem instance, there is a visible improvement
compared to without this typify idea.

instance without typify with typify

products72 27.67 21.52
basicGIAut 3.13 2.50

basicAut1 1.72 1.70
basicAut2 1.41 1.41

Table 4: Computation times with and without using typify algorithm to decrease isomorphic comparisons

3

J. Smulders, J. Tripathi, L. Wang, R.Yang: Project Documentation Group 07

6. Balance Sheet & Reflection

6.1. Work Distribution

The following is the estimated work distribution in the group for this implementation project.

J. Smulders J. Tripathi L. Wang R. Yang

Color Refinement –% –% 25% 75%

Branching Algorithm –% –% –% 100%
Preprocessing Twins 50% –% 50% –%

Fast Part. Refinement –% –% –% 100%
Generating Set –% 20% 20% 60%

Table 5: Work Distribution Group 07.

6.2. Team Dynamics

Our positive and/or negative experiences with respect to teamwork and team composition in the
project group, specifically with respect to the interdisciplinary team composition are:

+ The team consists of 3 TCS students and 1 AM students. The AM student experienced new
things like SCRUM meeting and GitLab. The TCS students observed the highly abstract
thinking when the AM student raise the algorithmic idea of processing twins.

+ Since Apr.7, we’ve had a SCRUM meeting every morning. The attendance is perfect.

- There was an inharmonious argument near the deadline concerning workload distribution.
Such issues can be better handled if the relevant people can have conversation in private at
first.

References

[1] Martin Grohe, Kristian Kersting, Martin Mladenov, Pascal Schweitzer (2017) Color Refinement
and its Applications. Page 4-5.

4

	Category 6: Basic Problem Instances
	Category +1: Additional Techniques for Faster Algorithms
	Branching Rules
	Preprocessing
	Trees
	Preprocesing using Twins or Modules

	Category +1: Implementation of Fast Partition Refinement
	Category +1: Using Generating Sets for Computing |Aut(G)|
	Category +1: Additional and Genuinely New Ideas
	Theorem
	Corollary

	Balance Sheet & Reflection
	Work Distribution
	Team Dynamics

