
Logic Programming Assignment
Ruilin Yang, Joanna Rostek

s2099497, s2459698
Enschede, 28.05.2020

1. Solved parts of the assignment

In our implementation of the solver, we have solved all parts mentioned in the project guide:
checking for the row and column hints, and making sure that all the requirements for a correct
solution are met.
On the solved instances, our program yields the correct solution, does not return wrong
solutions, and returns each solution only once.

2. Solved puzzles and computation times

We have solved following puzzles:

Puzzle name Inferences
(a)

Computation
time (a) [s]

Inferences
(b)

Computation
time (b) [s]

p2x2 2,333 0.001 2,494 0.001

p3x3 23,563 0.005 6,512 0.002

p3x3b -s1 47,005 0.009 8,214 0.002

p3x3b2 - s2 13,149 0.003 6,741 0.002

p5x5_two - s1 13,149 0.003 30,605 0.006

p5x5_two - s2 131,833,195 17.92 675,148 0.097

pCycle 1,140,559 0.189 13,571 0.003

p4x4 19,678 0.002 17,432 0.004

p5x5 140,186,623 23.641 73,307 0.014

p7x7 - - 848,140,233 101.500

p10x10 - - - -

p12x12 - - - -
Table 1: Computation times. ​The two columns marked with (b) are our final result. The code
that generates this result differs only 1 line from the code that yields results in the two (a)
columns. More on the efficiency issue in Section 4 and 5.

3. Implementation

3.1. Counting neighbours

We check that the number of neighbors of each piece is between 1 and 2 by restricting the
domain of the selected piece, and then mapping its neighbours’ values - all non-zero pieces are
set to one. At the end, we check that the sum of all mapped values fits the set restriction.

3.2. Non-touching

Since counting neighbours ensures that there won’t be a conflict vertically or horizontally, we
check only that there are no diagonal pieces touching each other. First we test two rows with
pattern matching, and after that, we ensure that the head won’t be touched diagonally by the
body.

3.3. Connectivity

We follow the idea of tracing the snake body from one head, and count how many snake body
parts can be traced this way. Then compare this number with the number of overall snake body
parts on the grid, regardless of whether they are connected or not.

To do this, we made a predicate to index the matrix, thus we can move within the grid freely.
The key trick is, “traceSnake/6”, the predicate used to trace connected parts, not only knows
the index of the current cell of focus, but also knows the index of its previous step. In this way,
it can make sure it won’t go back to where it came from, by picking the next step as a non-zero
neighbor that differs from the previous cell. The base case is reached when the only non-zero
neighbor of the current cell is its previous cell.

4. Deviation from hints

We have decided to do the sanity check during copying rows, instead of the suggested method.
After realizing that the head and tail are always given, so any free variable should either be 0
or 2, we add a constraint to the copyGrid predicate, so that all free variables are constrained
from the very beginning, sufficiently cutting the tree spawned by filling variables with 1.
Therefore there won’t be many unnecessary calls to the expensive checkConnectivity.

For p5x5_two, this has cut the number of inferences by a factor of 100.

5. Efficiency

5.1. Solutions

As mentioned in 4. Deviations from hints, our efficiency increased dramatically after
restricting the free variables at the very beginning of computation. This can also be seen in
Table 1. Computation times.

The two predicates - counting neighbors and checking non-touching, have also been combined
into one, because this way they can work on the same rows one after the other, instead of
going through the entire grid twice.

5.2. Unsolved Issues

We found that checking connectivity was very expensive, even when it was supported by first
adding the sanity check.

