Exploring Factors Affecting Accuracy in Quantitative Natural Language
Inference: Insights from Data Augmentation, Numeral Tokenization
Strategies, Model Architectures, and Hyperparameters

Ruilin Yang
University of Potsdam
ruilin.yang@uni-potsdam.de

Abstract

In this paper, we examine the impact of a
model’s configurations and hyperparameters on
its performance on Quantitative Natural Lan-
guage Inference (QNLI) problems. We define
model configuration through 3 dimensions: it
is trained on the original training set or the aug-
mented training set, each numeral is treated as
a single token or further split into digit-based
tokens, and the variations in model architecture.
Furthermore, we investigate the impact of dif-
ferent hyperparameters on performance given
the same model architecture. In conclusion,
within the range of our experiment, on the side
of configuration, training set and tokenization
of numerals don’t have a clear impact on the
performance, while model architecture makes
a visible difference; on the side of hyperparam-
eters, learning rate shows a ubiquitous correla-
tion with performance across all model archi-
tectures, while other hyperparameters such as
batch size, hidden size or embedding dimen-
sion, have no clear and consistent correlation
with the performance.

1 Introduction

Natural Language Inference (NLI), also known as
Recognizing Textual Entailment (RTE), is the task
of determining the inference relation between two
(short, ordered) texts (MacCartney and Manning,
2008). Given a “premise”, if the truthfulness of
a “hypothesis” is true, false, or undetermined, the
relationship between them is respectively defined
as entailment, contradiction, or neutral. Quanti-
tative Natural Language Inference (QNLI) is an
NLI task with both the premise and the hypothesis
involving numerals that play a crucial role in de-
termining the answer. Due to the ubiquitous role
of numerals in our lives, reasoning with numer-
als has drawn research interest. QNLI can enable
immediate applications that require good Natural
Language Understanding capabilities of numerals,
such as semantic search and question answering

(Harabagiu and Hickl, 2006) in data-intensive do-
mains like finance or healthcare (Duan et al., 2021).
In this project, we use a subset of the EQUATE
dataset to explore how different configurations and
hyperparameters can impact the performance of
QNLI task. Specifically, we define configuration
along 3 dimensions: whether or not we augment
the training dataset by making use of the prop-
erties of inference logic, whether or not we split
numerals as one token per digit, and out of 4 model
architectures (Feedforward Neutral Network, (bidi-
rectional) Recurrent Neutral Network, and Trans-
former) which one to choose. In addition, we zoom
in on the models with the best and worst perfor-
mance across different architectures, to examine
the relationship between each hyperparameter and
model performance.

2 Related Works

Several studies have been carried out on the same
dataset: Ravichander et al. (2019) has tested vari-
ations of the BILSTM-RNN model together with
transformer-based models such as OpenAl GPT
and BERT, none of the tested models consistently
outperforms the majority baseline on all subsets
of EQUATE benchmark. Mishra et al. (2022)
achieved an f1 score of 85% with a neural-symbolic
model Ex-NumNet augmented with Information Re-
trieval. Most recently, Chen et al. (2023) improved
the performance to above 99% by exploring the
notation of numbers, and by leveraging pre-trained
transformer-based models with a pre-finetuning
number comparison task.

Along the direction of previous studies, we
choose RNN and Transformer as our focused
model architecture and a Feedforward Neural Net-
work as a simpler architecture for comparison.

notation

example

original
(s1,s2)

character
(s1_char, s2_char)

Figure 1: 2 different notations of numbers: original,
characterized original.

3 Task Formalization

We train and tune a collection of models under
each different configuration, where each model is
initialized with a set of randomly generated hy-
perparameters. After that we analyze if certain
configurations lead to better results, and if there
exists a pattern between various hyperparameters
and the performance.

3.1 Configurations

We define configurations as the settings outside a
model. Specifically, they are training set augmenta-
tion, notation of numerals, and model architecture.
In total, we have 16 configurations, considering
all the combinations of variations along these 3
dimensions.

3.1.1 Data Augmentation

Data augmentation is a widely used technique in
many machine learning tasks to virtually enlarge
the training dataset size and avoid overfitting. In
our QNLI task, we can utilize the property of in-
ferential logic to augment the training set: when
the relationship between a premise and a hypoth-
esis is contradiction or neutral, we can swap the
order of premise and hypothesis, and the contra-
diction/neutral relationships stay the same. It does
not apply to training examples where the relation-
ship is entailment, because implication does not
necessarily work in a reversed way. For data aug-
mentation, we have two options: normal training
set or augmented training set.

3.1.2 Numeral Tokenization

A study of Chen et al. (2023) shows transforming
the numerals in the statements can improve the
performance. Characterized notation, where each
numeral is split so that a single digit becomes a
token, is correlated with higher accuracy compared
with taking the numeral itself as a token, see Figure
1. For numeral tokenization, we have two options:
original notation or characterized notation.

3.1.3 Model Architecture

Along the lines of the previous study, we choose Re-
current Neutral Network (RNN) and Transformer
as our main focus of interest in model architecture.
We add Feedforward Neural Network (FFNN) for
comparison. For RNN we have the option to make
it bidirectional, to exclude bidirectional or not as a
hyperparameter, we choose to define Bidirectional
RNN (BiRNN) as a separate model type. In the
end, we have four options for model architecture:
RNN, BiRNN, Transformer, and FFNN.

3.2 Hyperparameter

Under the same configuration, the model’s perfor-
mance can differ due to different hyperparameters.
Because of the large number of hyperparameters
and the limitation of computational resources, it
is infeasible to perform a grid search in the hyper-
parameter space. We adopt a practical approach
to selectively choose hyperparameters to tune and
fix some hyperparameters to be static. The tuning
process can be characterized as iteratively zooming
in, in the hope of hitting the region that yields good
results in the hyperparameter space: we first train
a set of models initialized with randomly gener-
ated hyperparameters, see if there are specific co-
ordinates in the multi-dimensional hyperparameter
space that correlates with good performance, and
zoom in to generate hyperparameter sets within the
promising range to train more models, if computa-
tional resource allows. When the tuning is finished,
we analyze the characteristics of various hyperpa-
rameters that correlate with good performance.

A summary of all the fixed and tune-able hyper-
parameters can be seen in Table 1.

4 Data

The train/dev/test set consists of 6475, 970, and
1691 examples respectively. Each training exam-
ple is a tuple of (s, s2, label), s1 and s2 are the
two (ordered) statements, the label indicates their
relationship is entailment, neutral, or contradiction.

The dataset comes from Chen et al., 2023, which
is in turn adapted from the EQUATE benchmark
(Ravichander et al., 2019). The training set covers
4 subsets of EQUATE paper, the dev and test set
consist of StressTest only, see Table 2.

The RTE_Quant set is constructed from the
RTE subcorpus for quantity entailment, with state-
ments requiring temporal reasoning removed. The
NewsNLI set is created from the CNN corpus of

Hyperparameter Is tunable? (Y/N) Note

n_epochs N Fixed to be 1000

dropout N Fixed to be 0.2, see 5.1
Optimizer N Fixed to be Stochastic Gradient Descent
batch_size Y -

learning_rate Y -

embedding_dim Y -

hidden_size Y Only for FEFNN / (Bi)RNN
num_layers Y Only for FFNN / (Bi)RNN
num_blocks Y Only for Transformer
num_heads Y Only for Transformer

Table 1: All the hyperparameters that are considered in this study. Including fixed hyperparameters and tunable

hyperparameters.
dataset StressTest NewsNLI AWPNLI RTE_Quant
train 4619 968 722 166
dev 970 - - -
test 564 - - -

Table 2: Source subset of EQUATE dataset of our train/dev/test sets.

news articles with abstractive summaries. The
AWPNLI set is synthesized by establishing a world,
optionally updating the world, and posing a ques-
tion about the world. The StressTest set is syn-
thesized from algebraic problems (Ravichander
etal., 2019). Examples of each subset can be found
in Table 3.

5 Experiments

5.1 Models in Detail

All the models we implement incorporate an em-
bedding layer in which the shape is affected by
both configuration (how we tokenize text, hence
the vocabulary size) and the embedding dimen-
sion hyperparameter that is randomly generated.
Other aspects of model shape such as hidden size
and number of layers for FFNN and (Bi)RNN, and
number of heads and number of blocks for Trans-
former, are all subject to the randomly generated
hyperparameters.

5.1.1 Majority Baseline

We evaluate our models against a majority class
baseline. Since the distribution of all 3 answers
in both the dev set and test set are even (see Table
4), a naive model that randomly chooses answers
would have a baseline accuracy of 33% on both the
dev set and test set.

5.1.2 FFNN

Our FFNN has one embedding layer, one input
layer, and potentially several hidden layers, and
one output layer. We fix the activation function
to be ReLU which is applied after each layer. A
dropout layer with a fixed dropout rate of 0.2 will
only be applied to each hidden layer, and to the
input layer only when there is at least 1 hidden
layer. The embeddings of all tokens in the sequence
are pooled by taking the element-wise average. The
pooled embedding is then fed to FFNN as input.

Hyperparameter embedding_dim determines the
embedding dimension, and num_layers affects the
number of hidden layers it has.

5.1.3 (Bi)RNN

Our RNN model has one embedding layer, one
built-in RNN module from PyTorch, and one out-
put layer to project the output of the RNN module
to the number of desired classes, in our case, 3.
The BiRNN model consists of two RNNs that go
through the training examples in the opposite di-
rection, and combine the output of the RNNs into
a single output. We implement it adapting our
RNN model, setting the built-in RNN module to
be bidirectional. The reason we mention BiRNN
as a standalone model type, rather than an option
for RNN, is because we want to exclude bidirec-
tional flag from hyperparameters. Hyperparameter
embedding_dim determines the embedding dimen-

roll jobs in August as the unemployment
rate dipped to 5.4 percent , a modest im-
provement over the 5.5 percent jobless
rate in July , the Labor Department re-
ported Friday ."

EQUATE | s1 s2

subset

StressTest| "Fred and Sam are standing 40 miles | "Fred and Sam are standing 20 miles
apart and they start walking in a straight | apart and they start walking in a straight
line toward each other at the same time" | line toward each other at the same time"

NewsNLI "A'$ 5,000 reward is offered ." "Know something ? Call 641-228-182 .

A reward is offered"

AWPNLI "Joan has 8.0 orange balloons and her | "Joan has 5.0 orange balloons now"
friend gives her 2.0 more "

RTE_Quant | "Employers created 144,000 new pay- | "The Labor Department said this sector

has added nearly 1 of every 5 of the new
jobs created during the last 12 months ."

Table 3: Examples of training data from different EQUATE subset.

dataset #entailment neutral contradiction
train 2461 2112 1902

dev 324 323 323

test 564 564 563

Table 4: Answer distribution in train/dev/test dataset.

sion, and num_layers turns (Bi)RNN into stacked
(Bi)RNN with a specified number of layers.

5.1.4 Transformer

We implemented a decoder-only Transformer from
scratch. The embedding of tokens is computed
from the addition of token embedding and posi-
tional embedding, with positional embedding being
able to embed sequences of a maximum length of
512. 512 is more than 3 times the maximum num-
ber of tokens in a sequence in the training examples.
The embedded tokens are then fed to a series of
blocks sequentially, wherein each block it’s a multi-
head self-attention module, followed by a linear
layer that projects the output of the self-attention
back to the size of the embedding dimension, inter-
leaving with two normalization layers, thus making
sure the output comply to the size and can be conve-
niently fed to the next block. Within the multi-head
self-attention module, there are varied numbers of
self-attention heads, where the embeddings of each
token are updated as a weighted average of the
embeddings of all the other tokens in the sequence.

Hyperparameter num_blocks and num_heads
decide the number of blocks and self-attention
heads in each block respectively.

5.1.5 Summary

The configurations as defined in 3 yield 16 unique
combinations. For each configuration, we trained
several models initialized with randomly generated
hyperparameters. With the restrain of computa-
tional resources, the count of models of each con-
figuration we trained can be seen in Table 5.

5.2 Evaluation and Discussion on Dev Set

In this section, we inspect the performance of all
trained models on the dev set; in section 6 “Results
and Error Analysis”, we choose the models with
the best performance and evaluate them on the test
set. This way we ensure that we are not choosing
the best models in favor of the test set and that the
performance on the test set could be a realistic esti-
mate of the model’s performance in the real world.
Since we don’t have the problem of unbalanced
classes, we use accuracy as the metric on both the
dev set and the test set.

As an overall observation of performance across
all dimensions of configuration, see Figure 2,
(B1)RNN and Transformer can both achieve good
results, with the best results of (Bi)RNN slightly
higher than Transformer, and the variance of
(B1)RNN higher than Transformer. It is expected
that FFNN does not perform well in general, since

dataset #models
normal training set | original notation | FFNN 10
normal training set | original notation | RNN 5
normal training set | original notation | BIRNN 10
normal training set | original notation | Transformer 5
normal training set | original_char notation | FFNN 10
normal training set | original_char notation | RNN 10
normal training set | original_char notation | BIRNN 7
normal training set | original_char notation | Transformer 13
train_augmented set | original notation | FFNN 8
train_augmented set | original notation | RNN 8
train_augmented set | original notation | BIRNN 5
train_augmented set | original notation | Transformer 5
train_augmented set | original_char notation | FFNN 10
train_augmented set | original_char notation | RNN 5
train_augmented set | original_char notation | BIRNN 6

train_augmented set | original_char notation | Transformer 5

Table 5: A summary of the number of models we trained under each configuration.

accuracy on dev set for each model type

1.0 4

0.8 A

Y

0.6

dev_accurac

0.4

0.2 4

BIRNN FFNN RNN Transformer

model

Figure 2: Overall performance on dev set of all models
across all configurations.

much information is lost when pooling the embed-
dings in the sequence.

The performance range of (Bi)RNN and Trans-
former have slightly lower variance on the aug-
mented training set, with the best performance
slightly lower than models trained on the normal
training set, see Figure 3 and Figure 4. There is
no clear and consistent pattern of the impact on
different notations.

While most models outperform the majority
baseline accuracy of 33%, we see a lack of dif-
ference between original notation and character
notation. It might come from the bias of the pro-

config
® augmented_character
augmented_original
@ normal_character
e normal_original

accuracy on dev set for each model type and training set

o2 .: training set
° o ® normal
03 . . augmented
. Sop®
¢ L]
0.7 4 L] L]
L]
> ¥ o
e :
3 0.6 -
o
®
>
[¥) L] L]
= L]
0.5 4 .
H
. L L[]
H :
0.4 1 e .
® . Y
* -
. ®sesnsae .
T T T T
BIRNN FFNN RNN Transformer
model

Figure 3: A closer inspection at the impact of data
augmentation on dev set accuracy across different model
architecture.

accuracy on dev set for each model type and notation

.
L]
0.8 1 *
L]
L] L]
L] L]
0.7 A . . N
> . o .
2 .
c
3 0.6
1=}
fﬁ‘ L]
> L]
] . . *
0.5 4 .
- L ™Y L]
[
0.4 4 Py
. oo et
L seve .
T T T T
BiRNN FFNN RNN Transformer
model

Figure 4: A closer inspection at the impact of numeral
tokenization on dev set accuracy across different model
architecture.

vided dataset. We assume the count of unknown
tokens (#UNK) under character notation all comes
from the unknown non-numeral tokens, subtract-
ing it from #UNK of original notation, we get an
estimate of the #UNK that comes from numeral
tokens in the original notation. We see that #UNK
of numeral token takes a small proportion in both
the dev set and the test set in Table 6.

In reality, it is not viable to expect the training
set that consists of finite examples to cover the
infinite possibility of numeral tokens. While in our
experiment the notation of numbers does not make
a visible difference, it might partly come from the
bias in the dataset.

Since we didn’t observe a clear pattern along the
training set and notation dimension of configura-
tion, in the following analysis of hyperparameters
we discard these two dimensions, rather, we only
focus on the model architecture and the hyperpa-
rameter of interest. For better contrast, we focus on
the models with the top 25% and bottom 25% per-
formance of each model architecture. We use filled
circles to denote the best models, filled squares to
denote the worst ones and color to encode different
model architectures.

In Figure 5 we see the relationship between dev
set accuracy and learning rate. The learning rate is
randomly generated from the range 10e-4 to 10e-1
on a log scale. There is a clear correlation between
learning rate and dev set accuracy regardless of
model architecture, the models with the best perfor-
mance tend to concentrate in the range (0.01, 0.1),

n

dev_accuracy against learning_rate for best and worst models

®
° '. model
. LI } ° ® BiRNN
: ° oq FFNN
s ° ° ® RNN
° ¢ ® Transformer
0.7 A
>
[
c
3 0.6
o
il
>
3 m
0.5 = o
®)
] =]
e o ®
0.4
]
g
mgm m

1073 102 10°*

learning_rate

:
107*

Figure 5: Learning rate of the best-performed and worst-
performed models, across all model architecture. Filled
circles denote best-performed models, filled squares
denote worst-performed models.

while most of the worst-performed models have

learning rates near 10e-4.

For all the other tunable hyperparameters in Ta-
ble 1, we didn’t observe a visually significant link-
age between the value of the hyperparameter and
the accuracy on the dev set. We include the plots
in the Appendix A.2.

6 Results and Error Analsis

We choose the best model from each model archi-

tecture based on the accuracy of dev set, evaluate it
on the test set, and provide a concise error analysis.

6.1 Evaluation on Test Set

The best model is chosen based on dev set accuracy

of each model architecture. Accuracy on training
set and dev set are for reference, see Table 7

6.2 Error Analysis

* The Most frequent error across all best mod-
els is in predicting entailment labels, within
the same model, the recall of the entailment
class is consistently lower than the other two
classes, see Table 8. This indicates chal-
lenges in understanding logical relationships
between statements.

» Statements containing complex reasoning or
multiple conditions are more likely to be clas-
sified incorrectly, see Figure 6.

* More errors observed in complex lexical and
syntactic structures (sentences with multiple

dataset #UNK original (1) #UNK characterized (2) (1)-(2) #examples
devset 721 607 114 970
testset 1069 900 169 1691

Table 6: Number of unknown tokens in dev set and test set, when training set is in original notation and characterized

notation respectively.

best model train_accuracy dev_accuracy test_accuracy
FFNN 51.57% 47.63% 46.84%
RNN 88.83% 85.15% 83.80%
BiRNN 90.32% 84.64% 82.02%
Transformer 90.67% 77.22% 77.47%

Table 7: Accuracy on train/dev/test sets of the best-performed model of all model architecture.

Statement 1:

Jill works as a waitress at the local diner where she earns an hourly wage of $
6.00 per hour and a standard tip rate of 35 % of the cost of the orders she serves
Statement 2:

Jill works as a waitress at the local diner where she earns an hourly wage of $
6.00 per hour and a standard tip rate of 65 % of the cost of the orders she serves

Statement 1:

John paid a 15 % tip over the original price of the dish , while Jane paid the tip
over the discounted price for the coupon

Statement 2:

John paid a 25 % tip over the original price of the dish , while Jane paid the tip
over the discounted price for the coupon

Figure 6: Two example of the test set where all 4 of the
best-performed model predicted wrong.

clauses, nested phrases, or uncommon vocab-
ulary), see Figure 6.

7 Conclusion

In this paper, we examine the impact of different
configurations and hyperparameters on the perfor-
mance of QNLI task. In configurations, we find
augmenting the training set and transforming nu-
merals as single digit-based tokens do not have a
visible impact, however, the lack of impact of alter-
native way of numeral tokenization might partly be
explained by the bias in the provided dataset, that
many numerals in dev and test set have appeared in
training set. Among all hyperparameters, we find
the learning rate has a strong correlation with per-
formance. All the other hyperparameters that we
consider do not show a clear pattern of correlation
with the performance.

8 Limitations

In the original notation where each numeral is
treated as a token, due to the infinite nature of nu-
merals, the vocabulary computed from the training
set would be insufficient in recognizing the numer-

als in the dev set and test set. For QNLI problems,
the numerals play a crucial part. If the models only
learned to deduce the answer from the non-numeral
tokens, we may lack confidence in model robust-
ness. In the character notation, where each numeral
is split into multiple single-digit tokens, the prob-
lem of recognizing dev set and test set numerals
as unknown tokens is lifted, since all digits can
be recognized. However, each single-digit token
is no different from a non-numeral token, adding
or removing one single-digit token is adding or re-
moving one ordinary token in the vocabulary to
the model, but it will cause the change of the un-
derlining number by a factor of 10 and might have
critical impact on the answer of QNLI problem.
Even with all single-digit tokens recognized, the
numeracy structure is still lost.

Transforming the numeral tokens into scientific
notation and splitting the scientific notation into
single-digit-based tokens as characterized scientific
notation might preserve more numeracy structure.
They are indeed provided dataset from Chen et al.,
2023, however, we discovered the data quality of
these two more promising notations to be corrupted,
see Appendix A.3, and due to time constrain we
dropped them.

Another direction of improvement is to compute
the embeddings of numerals and non-numerals sep-
arately: Non-numerals are embedded in the same
way as one token in the vocabulary, while the em-
bedding of numerals is computed in a way that
preserves their numeracy, such as DICE Sundarara-
man et al. (2020) and NEKG Duan et al. (2021).

9 [Ethical Considerations

Numeracy-literate models may have access to vast
amounts of sensitive numerical data, raising con-

best model entailment_recall

neutral_recall

contradict_recall

FFNN 29.32%
RNN 63.89%
BiRNN 68.83%
Transformer 58.95%

58.33% 55.56%
98.46% 93.21%
96.30% 88.89%
84.57% 88.27%

Table 8: Accuracy on train/dev/test sets of the best-performed model of all model architecture.

cerns about privacy and surveillance. If not prop-
erly regulated, these models could exploit personal
or financial information without consent, leading
to breaches of privacy and potential misuse of data.
In addition, models trained in numeracy may ex-
acerbate existing social and economic inequalities
by favoring those with access to high-quality nu-
merical data or resources for model development.
This could widen the gap between those who ben-
efit from numerical literacy and those who are
marginalized or disadvantaged.

References

Chung-Chi Chen, Hiroya Takamura, Ichiro Kobayashi,
and Yusuke Miyao. 2023. Improving numeracy by
input reframing and quantitative pre-finetuning task.
In Findings of the Association for Computational
Linguistics: EACL 2023, pages 69-77, Dubrovnik,
Croatia. Association for Computational Linguistics.

Hanyu Duan, Yi Yang, and Kar Yan Tam. 2021. Learn-
ing numeracy: A simple yet effective number em-
bedding approach using knowledge graph. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 2597-2602, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Sanda Harabagiu and Andrew Hickl. 2006. Using sce-
nario knowledge in automatic question answering. In
Proceedings of the Workshop on Task-Focused Sum-
marization and Question Answering, pages 32-39,
Sydney, Australia. Association for Computational
Linguistics.

Bill MacCartney and Christopher D. Manning. 2008.
Modeling semantic containment and exclusion in nat-
ural language inference. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 521-528, Manchester, UK.
Coling 2008 Organizing Committee.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. NumGLUE: A suite of funda-
mental yet challenging mathematical reasoning tasks.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3505-3523, Dublin, Ireland.
Association for Computational Linguistics.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose,
and Eduard Hovy. 2019. EQUATE: A benchmark
evaluation framework for quantitative reasoning in
natural language inference. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 349-361, Hong
Kong, China. Association for Computational Lin-
guistics.

Dhanasekar Sundararaman, Shijing Si, Vivek Subra-
manian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. 2020. Methods for numeracy-
preserving word embeddings. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4742-4753,
Online. Association for Computational Linguistics.

A Appendices

A.1 Personal Contribution in Teamwork

My learning goal for this project is to consolidate
my theoretical and practical knowledge of RNN,
Transformer, and methodologies of hyperparameter
tuning, plus brush up on necessary tools such as
Git, Latex, and Docker. Apart from Docker, I
have achieved all my learning goals.

I have implemented RNN on top of PyTorch
built-in RNN module, and Transformer from
scratch. As I am more experienced in programming
within the team, I also provided the scaffolding of
the codebase for my teammates such as hyperpa-
rameter tuning, data loading and transformation,
command line argument parsing, etc. I shared my
experiences with teamwork methodologies such as
SCRUM and Git workflow.

I started from a position of having a vague un-
derstanding of the basics such as how embeddings
work, with almost no experience with PyTorch,
and completely no experience of reading NLP pa-
pers. In the end, I have a much better understand-
ing of NLP workflow, a clearer idea of how re-
searchers work, a mental picture to work with high-
dimensional tensors, and gained practical experi-
ence to code with PyTorch.

https://doi.org/10.18653/v1/2023.findings-eacl.4
https://doi.org/10.18653/v1/2023.findings-eacl.4
https://doi.org/10.18653/v1/2021.findings-emnlp.221
https://doi.org/10.18653/v1/2021.findings-emnlp.221
https://doi.org/10.18653/v1/2021.findings-emnlp.221
https://aclanthology.org/W06-0705
https://aclanthology.org/W06-0705
https://aclanthology.org/C08-1066
https://aclanthology.org/C08-1066
https://doi.org/10.18653/v1/2022.acl-long.246
https://doi.org/10.18653/v1/2022.acl-long.246
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/2020.emnlp-main.384
https://doi.org/10.18653/v1/2020.emnlp-main.384

dev_accuracy against batch_size for best and worst models

. H] . model
% . ® BIRNN
08 o FFNN
. H %
® RNN
. ° e Transformer
0.7 1
>
9
c
S 06
o
N
>
k- .
0.5 4 -
L]
"
0.44
L]
] f
L [*
- B [L] =
T T T T
200 300 400 500

batch_size
Figure 7: Dev set accuracy against batch size

dev_accuracy against embedding_dim for best and worst models

. . model
. e
H . o ® BIRNN
081 w . . FFNN
.
% ® RNN
: ® Transformer

e
3
N

Y

e
o
L

dev_accurac

e
«n
L

0.44 .
L] .
=
- " g]
. . " :
64 128 192 256

embedding_dim

Figure 8: Dev set accuracy against embedding dimen-
sion

A.2 Dev Set Accuracy against Various
Hyperparameters

In the following figures, filled circles denote best-
performed models, filled squares denote worst-
performed models. Color encodes the different
model architecture.

A.3 Data Quality Issue

In exploratery data analysis we find the number
of tokens per example of characterized scientific
notation blows up by a factor of 100 (see Figure 13,
compared to uncharacterized scientific notation.

We locate the problem to be in scientific nota-
tion, more than necessary zeros are added to the
number, and subsequently the characterized scien-
tific notation is also corrupted. When we find this
problem, we have run out of time to clean the data
and test on these two notations again.

dev_accuracy against hidden_size for best and worst models

H . . model
- ® BiRNN
0.8 1 . . . FENN
. ® RNN
0.7
-
[
e
S 0.6+
o
o
)I
L] .
0.5 .
L]
.
0.4
- " £
T T T T
64.0 128.0 192.0 256.0
hidden_size

Figure 9: Dev set accuracy against hidden size, only
applicable to FFNN, and (Bi)RNN.

dev_accuracy against num_layers for best and worst models

. < . model
o * ® BiRNN
0.8 . . FFNN
. @® RNN
0.7 1
>
9
e
S 0.6+
o
o
o
3 .
0.5 4 -
|]
H
0.4 4
n u
e - By
T T T
10 2.0 3.0
num_layers

Figure 10: Dev set accuracy against number of layers,
only applicable to FFNN and (Bi)RNN.

dev_accuracy against num_blocks for best and worst models

'! . model

® BIRNN

FFNN

RNN

@ Transformer

.
0.7 1

Y
o
o
L

dev_accurac

=
wn
L

0.4

L
" = u
] =

T T T

2.0 3.0 4.0

num_blocks

Figure 11: Dev set accuracy against number of blocks,
only applicable to Transformer.

dev_accuracy against num_heads for best and worst models

. s . model
- ® BIRNN
- @ FFNN
0.7 1 @ RNN
@ Transformer
>
© 0.6
c
5
o
o
5
>
L]
©
0.59
0.4 -
.
L
T T T
2.0 3.0 4.0
num_heads

Figure 12: Dev set accuracy against number of heads
in multi-head self-attention, only applicable to Trans-
former.

#token in train_ori #token in train_sci

125 4 125 o
100 4 100 o
75 4 75 4
50 4 50 4
254 254

T T

1 1

#token in train_ori_char #token in train_sci_char

150 2000 °

1500 o
100 4

1000 o
501 500 -
04

T T

1 1

Figure 13: Boxplot of number of tokens per example
across different notation of numerals.

pretty_print(train[271])

“statenent1”: "Last year 12 members of the club traveled to both England and France , 6 members traveled to bo
th England and Italy , and O members traveled to both France and Italy"

"statenent2": 'Last year less than 12 members of the club traveled fo both England and France , 6 members trav
eled to both England and Italy , and @ members traveled to both France and Italy",
“"options": " Entailment or contradiction or neutral?",
" “contradiction”,
“type’: "Type 7",
“statenentl sci_10E

JillL. 20. 0000000000E+060 . 6980000000E-+000., 0000000000E-+000 . 600B0BBBBRE +000 . 09900000}
3LL) menbers of the club trav
eled to both England and France ,

i members traveled to both England and Italy , and 0.00800G0000E+00 members traveled to both France and Italy",

statementl char”: *Last year 1 2 members of the club traveled to both England and France , 6 members traveled
to both England and Italy , and O members traveled to both France and Italy",

“statementl sci_10E_char": *Last year 1 . 20 . 00 00000000E+000.0000000000E+000
.0000000000E+000.0000000000E+0060.0000000000E+000.00000000
0O0E+000.0000000000E+000.0000000000E+000.0000000000E+0OE+0
.0000800800800E+001members of the club traveled to both England and France , 6 . 6. 66600000
00E+000.0000000000E+000.0000000000E+000.0000000000E+000.0
060000000E+000.0000000000E+000.0000000000E+000.0000000000
E+000.0000000000E+000.0000000000E+00E+0.0000000000E+000.0
0606666606E+00 nenbers traveled to both England and ITtaly , and 0 . 0000000000 E+0 0 nenbers
traveled to both France a

“statement2 sci 10F

g 0 i 2N nenbers of _the
club traveled to both England and France ,
6660600 +666 - 0600088890E +000 . 0000000000E +000 . 00998BB000E +88 - 0000009000E 000 . 0900000000E +00E+0 . 0999800000E+00 . 000)

EEEEIIIZEE menbers traveled to both England and Italy , and 0.0000000000E+00 members traveled to both France and
Ttaly”

“statement2_char": "Last year less than 1 2 members of the club traveled to both England and France , 6 member
s traveled to both England and Italy , and 0 members traveled to both France and Italy",
“statement2_sci_10E_char": "Last year less than1 .20 .0000000000E+000.00000060000
QE+000.0000000000E+000.0000000000E+000.00
©000000000E+006.0000000000E+000.0000000000E

E+ 0000
80000860E+00D .

Figure 14: One example of currupted training example.

	Introduction
	Related Works
	Task Formalization
	Configurations
	Data Augmentation
	Numeral Tokenization
	Model Architecture

	Hyperparameter

	Data
	Experiments
	Models in Detail
	Majority Baseline
	FFNN
	(Bi)RNN
	Transformer
	Summary

	Evaluation and Discussion on Dev Set

	Results and Error Analsis
	Evaluation on Test Set
	Error Analysis

	Conclusion
	Limitations
	Ethical Considerations
	Appendices
	Personal Contribution in Teamwork
	Dev Set Accuracy against Various Hyperparameters
	Data Quality Issue

