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1 Introduction

Transformer models rely on attention mechanisms
that consist of multiple heads to process infor-
mation. However, these models often have bil-
lions of parameters, and thus are too computation-
intensive to suit low-capability devices or applica-
tions with strict latency requirements. Various stud-
ies proposed methods of compression transformer
model such as BERT (Ganesh et al., 2021). While
structured pruning studies have been conducted on
monolingual BERT, there is limited understanding
of head importance in multilingual models across
different languages. This study aims to fill this
gap by evaluating the significance of individual
attention heads in multilingual BERT model and
examining their generalizability across languages.

2 Previous Works

Pruning techniques such as head ablation (Michel
et al., 2019) have provided valuable insights into
the inner workings of monolingual BERT models,
revealing that a high percentage of heads can be
pruned without significantly affecting the model
performance. Budhraja et al. (2021) compared
the effects of pruning on BERT and multilingual
BERT. However, the specific roles of individual
attention heads in multilingual BERT remain un-
derexplored. While multilingual BERT models
like mBERT have demonstrated impressive cross-
lingual zero-shot transfer learning capabilities (Wu
and Dredze, 2019), to which extent its transfer
learning ability is associated with individual heads
remains unknown.

This study aims to apply the systematic pruning
approach of (Michel et al., 2019) on mBERT, to an-
alyze head importance in multilingual in-language
learning settings, as well as in zero-shot cross-
lingual transfer learning.

3 Experiment Setup
3.1 Model

We will use the bert-base-multilingual-uncased
model (Devlin et al., 2018) as the starting point
of subsequent fine-tuning and experiments. With
12 layers of encoders and 12 attention heads within
each encoder layer, it has in total 168M parameters.

3.2 Dataset

We will fine-tune the selected models on the XNLI
dataset (Conneau et al., 2018), which includes pairs
of sentences of NLI task in 15 languages. Evalua-
tion will be conducted on the whole test set as well
as language-specific subsets of the test set.

3.3 Ablation Procedure

Head Ablation: We will systematically ablate one
head at a time and measure the performance impact.
Layer Ablation: For each layer, we will ablate all
heads but one to evaluate the layer-wise importance
of individual heads.

4 Research Questions

RQ1: What is the overall and per language baseline
performance of mBERT, after being fine-tuned on
the XNLI dataset?

RQ2: After each of the ablation methods, how does
the overall and per language performance drift?
This research question could be break down into
multiple sub-questions: Is there any relationship
among the changes across different languages? Do
languages from the same language family tend to
have similar pattern of performance drift when
different heads are pruned? Does the finding of
Michel et al. (2019) still hold? Are there any
specific heads or layers that have a significant
impact on performance, when ablated? And are
these impact the same across languages, or are they
language-specific?



RQ3: Does Ablation affect cross-lingual zero-shot
transfer learning?

For this question, we fine-tune mBERT on English
data only, and evaluate its performance on every
other language after each of the ablation methods.
Do the patterns found in RQ2 (if any) still hold?

5 Evaluation and Analysis

Performance metrics, such as accuracy and F1
score, will be used to assess the impact of head
ablation across languages. The results will be com-
pared to identify patterns and correlations in head
importance between languages. Statistical meth-
ods will be employed to correlate head importance
across different languages, providing insights into
the generalizability of heads.

6 Personal Learning Goals

1. Get hands-on experience of fine-tuning a pre-
trained model, and tweaking the model source code
in some way.

2. Brush up the statistical methods that are com-
monly used in NLP reasearch to analyze the evalu-
ation data.

7 Conclusion

This proposal outlines a cross-language head abla-
tion study to evaluate the importance of individual
attention heads in multilingual BERT model. By
systematically analyzing head importance across
languages, this study will provide valuable insights
into the cross-lingual capabilities of multilingual
models and inform future advancements in multi-
lingual NLP.
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